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Abstract Evolutionary algorithm (EA) has become popular in global optimization with
applications widely used in many industrial areas. However, there exists probable premature
convergence problem when rugged contour situation is encountered. As to the original genetic
algorithm (GA), no matter single population or multi-population cases, the ways to prevent
the problem of probable premature convergence are to implement various selection methods,
penalty functions and mutation approaches. This work proposes a novel approach to perform
very efficient mutation to prevent from premature convergence by introducing the concept of
information theory. Information-guided mutation is implemented to several variables, which
are selected based on the information entropy derived in this work. The areas of search are
also determined on the basis of the information amount obtained from previous searches.
Several benchmark problems are solved to show the superiority of this information-guided
EA. An industrial scale problem is also presented in this work.

Keywords Evolutionary algorithm · Premature convergence · Information entropy ·
Orthogonal design

Notation

A j , B j parameters of Antoine equation of component j
Cm index of the least discovered section of the mth selected variable
D probable premature convergence detector
E information entropy
E j information entropy of the j th variable
E threshold of information entropy
F fitness value
Fn liquid flow rate of feed to nth tray
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Fvn−1 vapor flow rate of feed to nth tray
f objective function
G j set of the j th variable of I
Hn−1 heat capacity of vapor entering nth tray
Hfn−1 heat capacity of vapor feed to nth tray
hn heat capacity of liquid hold up of nth tray
hfn heat capacity of liquid feed of nth tray
I set of individuals in the population
L0

j lower bound of variable j
Lh

j lower bound of section h of variable j

LCm
ωm lower bound of the least discovered section of the mth selected variable

L M
(
QK
)

orthogonal array with K variables and Q levels
L ′

m modified lower bound of the mth selected variable for modifying
premature individuals

Ln+1 liquid flow rate entering nth tray
MI number of individuals have been sampled
Mp total number of the individuals for each population
MEnj Murphreee vapor efficiency for j th component on nth tray
N number of variables
Oi position in the ordered population of individual i
P(z) the probability of the event z occurring
Ph, j probability of the j th variable of individuals located on the hth in

previous search
PCm ,m probability of the least discovered section Cm of the mth selected variable
P0

nj vapor pressure of pure component j of nth tray
R numbers of sections of a variable
S solution space
S j solution space of the j th variable
S′

m modified subspace of the mth selected variable for modifying premature
individuals

Sn liquid flow rate of stream leaving from nth tray
Svn−1 vapor flow rate of stream leaving from nth tray
sh, j subspace of section h of variable j
sCm ,ωm subspace of the least discovered section of the mth selected variable
Tn temperature of nth tray
U 0

j upper bound of variable j
U h

j upper bound of section h of variable j

U Cm
Ym

upper bound of the least discovered section of the mth selected variable
U ′

m modified upper bound of the mth selected variable for modifying
premature individuals

Vn vapor flow rate leaving nth tray
Wn liquid holdup on nth tray
X variable set
Xi set of the i th individual of I
xi, j j th variable of the i th individual
xnj actual composition of liquid leaving nth tray
Y set of selected variable
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y∗
nj composition of vapor in phase equilibrium with liquid on nth tray with

composition wnj

ynj actual composition of vapor leaving nth tray
yT

n−1, j actual composition of vapor entering nth tray

Greek Symbols
αq,m qth design of the mth selected variable of an orthogonal array
γm random number for modifying the boundary of the least discovered section

of the mth selected variable
δ threshold of probable premature convergence detector
σ scaling factor for adjusting the threshold
θh, j numbers of sampling of the j th variable that located on the hth section
ωm index of the mth selected variable

1 Introduction

Evolutionary algorithm (EA) has become one of the major trends in the so-called evolutionary
computing (EC). Many applications can be found from molecular level [1, 10] to plant scale
problems [9, 21]. Further, emerging areas that require global optimization are becoming more
and more challenging for developing efficient ECs. For instance, many packages [3, 13] are
designed to implement genetic algorithm (GA) to solve the placements of peptide docking.
On the other hand, chemical engineers also widely use GA to determine the chemical reaction
mechanisms [24]. Due to much increased application cases involving more and more compu-
tation cost of these complicated utilizations, it becomes important to improve the efficiency
of evolution algorithms. Furthermore, accurate evaluation of global optimum is also essential
particularly in the area of molecular design [10]. The objective of this research is to develop
an information mutation rule for the EA to prevent the occurrence of the probable premature
convergence problem from happening. A novel algorithm is further developed to improve
the efficiency of mutation by finding more informative mutation range of each variable.

Global optimization can be widely applied in many areas. Evolutionary algorithms have a
powerful and widely applicable stochastic search and optimization techniques. Many prob-
lems that are very difficult to solve by conventional techniques (optimization problems subject
to complex constraints, NP-hard problems . . .etc.) can be solved by EAs [6, 8]. In real engi-
neering application cases, problems with rugged contour involved in most practical cases are
of the major concern. Regarding the problem of ruggedness, α-BB, a very advanced extension
of Branch and Bound, has been the most attractive approach to be used among engineering
researchers by implementing analytical local smoothing techniques. A textbook [7] on α-BB
includes many applications and most of them are of industrial interest. The other stream
of global optimization is the so-called stochastic method, for example, simulated annealing
(SA) and EC. The difference between the above two approaches can be roughly listed in the
following:

(i) The α-BB involves considerable algebraic and mathematical analysis to the problem
itself, whereas the evolutionary approach does not have this problem.

(ii) The evolutionary approach basically cannot guarantee the global optimum of the prob-
lem, but the analytical approach can provide more theoretical insight into the problem.

It is clear that these two streams have their own values, and thus many extensive works have
focused on both approaches. The aim of this work is to derive an information-guided mutation
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algorithm such that the probable premature convergence problem in EA can be substantially
improved.

Information theory was first derived by Shannon [16]. The basic spirit of information the-
ory is to quantify the amount of information that can be obtained from sampling. It is hence
more desirable to sample a point that owns more information. Based on this idea, the authors
[4] derived a novel experimental design approach by implementing the so-called information
free energy and an artificial neural network meta-model to minimize the number of experi-
ments. Information theory was first implemented for GA by Tsujimura and Gen [20]. They
implemented information theory to find the best selection chromosome for a traveling sales-
man problem (TSP). However, in this work, the problem of probable premature convergence
of evolution algorithm is investigated. It is found that implementing information theory on
the selections of the mutation variables is more essential. A novel approach to allocating the
“rarely explored”, or called “most informative”, areas to perform efficient mutation is one
step further derived. The simulation results show that the application of information theory
is valid and useful.

Evolutionary algorithm has become quite substantial recently. The very recent develop-
ment concerns a so-called multi-population approach [18, 19]. This is very important when
the contour is extremely rugged and the search space is very large. By adding this concept,
some probable premature convergence problems of EA can be solved. However, according
to our experience, probable premature convergence can still happen in each population by
itself, and thus the exchange of information among the populations does not help. The other
development is to improve the stages of cross-over and initiation by implementing the con-
cept of orthogonal array [11, 25]. In this way, the uniformity of search can be improved
drastically. On the other hand, the so-called “hybrid method” of EA has also been widely
implemented in many applications. The basic idea of these approaches is to add some local
search approach to a “global” GA. These approaches can be either gradient-based search
[21], or Nelder & Mead [24], or Soli & Wet’s [15].

In this work, the body of the evolution algorithm implemented follows the standard text-
book written by Gen and Cheng [8], but a novel information-based mutation approach is
derived for evolution algorithm. In this novel approach, the selection of the variable to mu-
tate is based on the total information entropy of each variable. The total performance is
improved one step further by incorporating more accurate mutation adapted by local infor-
mation entropy and orthogonal design. It should be noted that we only modify the mutation
algorithm of the whole evolution algorithm, and this algorithm can be implemented to any
type of EC. The rest of this paper is organized as follows. In Section 2, all elements of the
evolution algorithm implemented by this work are summarized. In Section 3, the informa-
tion-based mutation algorithm is derived. In Section 4, several benchmark problems and
an industrial scale application problem are solved using both this novel approach and other
existed approaches. In the last section, conclusive remarks are given.

2 Background

Consider the general optimization problem with the following form:

X̂ = arg min
X

f (X)

Subject to X ∈ S (1)
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where f is the objective function, and X is a combination of N variables in the solution space
S such that for each variable X j of X , there exist an upper bound U 0

j and a lower bound L0
j . A

combination of variables is called an individual in evolution algorithm. A set of individuals
are called a population. Population size, Mp is the number of individuals sampled at each
iteration (or generation).

Five basic operators have to be considered in classical GA: coding-decoding, fitness eval-
uation, selection, crossover, and mutation. In a real-parameter EA, variables are used directly
to calculate the fitness values by skipping the step of coding-decoding. Each individual cor-
responds to one fitness value that is determined by a fitness function based on the objective
values. The suitable individuals are chosen as survivals to perform crossover according to
fitness value. The survive individuals are selected to be parents, and they are paired ran-
domly to generate new individuals. With a given proper probability, variables of individuals
are picked randomly to continue their mutation.

2.1 Fitness evaluation

Traditionally, the fitness function implemented in the GA is related to the result of the objec-
tive function f (X) in Eq. (1) per se. Some modification [5] on the fitness function can
drastically improve the performance of GA. In this work, a published code [2] from the
website is adopted. It is found that the following fitness evaluation can perform much better
than that to be carried out by f (X) itself:

F (Oi ) = 2 − PS + 2 × (PS − 1
)× Oi − 1

Mp − 1
, i = 1, . . . , Mp (2)

where F is the fitness value, PS is the selective pressure and Oi is the position in the ordered
population of individual i . The objective values of each population will be sorted out first
to get their position. The transformation is done to limit the reproductive range, so that no
individuals generate an excessive number of offspring. In this work, the selective pressure
was set as 2.

2.2 Selection

Diversity and convergence have to be considered as designing selection rules. Keeping proper
diversity of populations will prevent genetic search from being terminated prematurely. But,
applying too many forces to keep the diversity of populations may lead to a slow convergence.
Respectively, selection focuses on the best individuals will make genetic search toward nar-
row regions faster, but the genetic search may be trapped on local optimal or to be terminated
prematurely. Wild search is suggested in the beginning of a genetic search, and local search
is suggested at the end of the genetic search.

2.3 Crossover

For a discrete recombination, single-point crossover, multi-point crossover, and uniform
crossover are often used as reported in previous studies. There are many methods of cross-
over that have been implemented on real-parameter EA (linear crossover, a native crossover,
blend crossover, simulated binary crossover, simplex crossover and fuzzy recombination).
In case of linear crossover approach, intermediate recombination, line recombination and
extended line recombination have been wildly used. Intermediate recombination is adapted
in this study.
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2.4 Mutation

New off-springs are generated after crossover, which may be modified with some probabil-
ity. Non-uniform mutation is designed for fine-tuning capabilities. Directional mutation is
taken to avoid the individuals jamming into a corner. Gaussian mutation is often used in a
real-parameter EA. Mutation plays the main role in countering probable premature conver-
gence. But the rate of mutation is often set low to prevent genetic search from random search.
Therefore, a proper detector to detect probable premature convergence and an efficient pop-
ulation constructor will be very helpful to global optimization. In the next section, a novel
mutation approach is presented.

3 Information entropy-guided mutation EA

In this section, the information-guided EA (IEA) proposed by this work will be discussed.
Classical mutation may help EA to prevent probable premature convergence, while all indi-
viduals in a generation are the same. But the rate of mutation is often set low and may not take
action immediately as the probable premature convergence happened. One of the major con-
tributions of this work is to detect the probable premature convergence. Information-guided
mutation is stimulated while all individuals are the same, or the sum distance between a
randomly picked individual and others is lower than a setting threshold.

For the purpose of convenience, let’s assume that MI individuals have historically been
sampled. Let’s also define I to be a set of all historical individuals. Let Xi =(
xi,1, xi,2, . . . , xi,N

)
be a set of row elements of I , and G j = (

x1, j , x2, j , . . . , xMI , j
)T be a

set of column elements of I :

I = {
xi, j |i = 1, . . . , MI and j = 1, . . . , N

}

= {Xi |i = 1, . . . , MI } = {G j | j = 1, . . . , N
}

(3)

where xi, j is the j th variable of the i th individual. Let’s term Xi by an individual, G j by the
values of the j th variable of all generations.

Genetic operation may be trapped at a local optimum because of premature situation,
i.e., all individuals in the population are too close. In conventional EA, mutation plays an
important role to counter probable premature convergence. But it’s hard to expect that small
amount of mutated individual will still survive in the next generation algorithm as a low rate
of mutation is set, indicating that probable premature convergence may replay very soon.
Probable premature convergence can be detected by calculating the difference between indi-
viduals in population. Let’s select an individual Xd in the population randomly, and then the
difference of individuals between the selected one and others can be calculated. The detector
D is written as follow:

D =
Mp∑

i = 1
i �= d

|Xi − Xd | =
N∑

j=1

Mp∑

i = 1
i �= d

∣∣xi, j − xd, j
∣∣ (4)

While D = 0, all the individuals are the same, then it means that the situation of probable
premature convergence is happened or the true solution has been found. In practice, it is
necessary to set a threshold δ such that D ≤ δ, and the approach presented in the rest of this
section can be implemented.
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D =
Mp∑

i=1

Mp∑

j = 1
j �= i

∥
∥Xi − X j

∥
∥ ≤ δ = σ ×

Mp∑

i=1

Mp∑

j = 1
j �= i

∥
∥
∥X0

i − X0
j

∥
∥
∥ (5)

where X0
i is an individual of the initial population I 0, and σ is a scaling factor for adjusting

the threshold. In general, in case of rugged contour, there exists an average distance (D∗)
among the nearest local minima and the global optimum. It is obvious that if D > D∗ (or
σ > σ ∗) the global minimum cannot be discovered through IEA since the algorithm cannot
converged by the interruption of the above detector. On the other hand, if D is set low, then the
information-guided mutation derived in the following section will be performed in a lower
frequency. This will also affect the rate of convergence as discussed in the example section.

3.1 Information entropy

According to Shannon’s definition of information entropy [16] for a set of variables Z , which
can randomly take values z, the information entropy of the set Z is:

E
(
Z
) = −

∑

z∈Z

P(z) log P(z) (6)

where P(z) is the probability of the event z that is occurring. If Z can only take a narrow
range of values, P(z), then these values are close to 1. For other values in Z , P(z) is close to
0. Therefore, E(Z) is close to zero. On the contrary, if Z can take a lot of different values in
Z each time with a small P(z), E(Z) can be a large positive number. Therefore, information
entropy is a measure of how random a variable is distributed. To illustrate the concept of
information entropy, consider the following two random number generators that are designed
to generate natural number from 1 to 4. The first generator generated z1 = {10, 10, 10, 10}
samples respect to nature number Z1 = {1, 2, 3, 4}, while the second generator generates
z2 = {7, 12, 13, 8} samples respect to nature number Z2 = {1, 2, 3, 4}. The information
entropy of those two random number generators can be derived as the following:

E(Z1)=−
4∑

i=1

P(z1i ) log P(z1i )=−
(

10

40
log

10

40
+ 10

40
log

10

40
+ 10

40
log

10

40
+ 10

40
log

10

40

)

≈ 1.386

E(Z2)=−
4∑

i=1

P(z2i ) log P(z2i ) = −
(

7

40
log

7

40
+ 12

40
log

12

40
+ 13

40
log

13

40
+ 8

40
log

8

40

)

≈ 1.353

The first random number generator gets a higher value of information entropy implying that
more uniformly distributed, or more informative, numbers are generated by the first generator.

3.2 Information entropy measure to the diversity of sampling

For a real-parameter EA, information entropy can be used to measure diversity of dataset to
be distributed in the solution space. Higher information entropy of a variable means a more
diverse dataset of the variable to be distributed in the solution space. Consider the optimiza-
tion problem (1), let’s define S = {S j | j = 1, . . . , N

}
, with xi, j ∈ S j and L0

i < xi, j ≤ U 0
j .

Each solution space S j is equally divided into R sections as shown in Fig. 1. Let
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Fig. 1 Quantization of solution
space

S j = {sh, j |h = 1, . . . , R
}
, and sh, j =

[
Lh

j , U h
j

]
(7)

where






Lh
j = L0

j + (h−1)
R

(
U 0

j − L0
j

)

U h
j = U 0

j − (R− j)
R

(
U 0

j − L0
j

) , h = 1, . . . , R and j = 1, . . . , N

Let’s define the probability that xi, j ∈ sh, j in the previous search as the following: Assume
X has been sampled Qt times in the previous search, historically takes the values θh, j times

in one of its subspace sh, j =
[

Lh
j , U h

j

]
; and denote the probability for the j th variable to be

sampled in the hth subspace sh, j such that Lh
j < xi, j ≤ U h

j , then

θh, j = n
(
xi, j
∣∣xi, j ∈ sh, j

)
(8)

Qt = n (G1) = n (G2) = · · · = n (G N ) (9)

Ph, j = P
(
xi, j ∈ sh, j |i = 1, . . . , Qt , h = 1, . . . , R, j = 1, . . . , N

) = θh, j

Qt
(10)

where n is an operator to number the variable set, θh, j are numbers of sampling of the j th
variable that located on its hth section, and all the N variables are sampled Qt times. Phj is
the probability of the j th variable G j sampled at the hth section. Thus, the total information
entropy of the j th variable is:

E j = E(G j ) = −
R∑

h=1

Ph, j × ln
(
Ph, j

)
(11)

As the information entropy of each variable E = {E1, E2, . . . , EN } is calculated, the
diversity of each variable G j is measured. Variables with lower information entropy will be
selected to generate new individuals as the following:

� = {(ω1, ω2, . . . , ωK )
∣∣Eωm ≤ �E, ωm = 1, . . . , N , m = 1, . . . , K

}
(12)

where �E is a threshold to be adjusted at each generation. For instance, at the nth generation,
it can be set:

�E = Emaxe−n/Nmax (13)

where Nmax is the assumed maximum generation of the whole search. Another more conve-
nient approach is to choose fixed K variables from the variable set by setting K = �0.3 × N	,
such that:
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� = {(ω1, ω2, . . . , ωK )
∣∣Eω1 ≤ · · · ≤ EωK ≤ · · · ≤ Eωm , ωm = 1, . . . , N , m = 1, . . . , K

}
(14)

i.e., one may choose 30% from the total variables with the lowest information entropy to
perform mutation as described below.

3.3 The information-based orthogonal design

Leung and Wang [11] applied a special class of orthogonal arrays L M (QK ) to EA for gen-
erating both initial data and crossover, that M = Q J is the size of population, J is a positive
integer satisfying

K = Q J − 1

Q − 1
(15)

Applying orthogonal design to modify the premature individuals in the K subspaces can
be treaded as a K factors experimental design problem. The design level Q is determined by
the size of population and the number of selected variables.

While the K variables are determined to be renewed for the premature individuals, the
change will be focused on the least discovered section Cm of each selected variable Ym of
the individuals and an orthogonal design will be applied on the subspace sCm ,Ym , where

C =
{

Cm |θCm ,m = min
h

(
θh,m

)
, h = 1, . . . , R, m = 1, . . . , K

}
(16)

While applying the orthogonal array β = {αq,m |q = 1, . . . , Q, m = 1, . . . , K
}

to modify
the premature individuals, the boundary of the design space will be randomly bounded inside
the subspace sCm ,ωm as S′

m ,

S′
m = [L ′

m, U ′
m

] =


LCm
ωm

+ γm,1 ×
(

U Cm
ωm − LCm

ωm

)

R
, LCm

ωm
+ γm,2 ×

(
U Cm

ωm − LCm
ωm

)

R



(17)

where γm,1, γm,2 are random numbers, and 0 ≤ γm,1 < γm,2 ≤ 1, m = 1, . . . , K . The new
subspace S′

m of each selected variable will be quantized to Q levels,

β ′
m = (α1,m, α2,m, . . . , αQ,m

)
(18)

where αq,m = L ′
m + (m − 1) × (U ′

m−L ′
m)

Q , q = 1, . . . , Q and m = 1, . . . , K . Finally, the
replaced elements can be expressed as follows:

x ′
i,m = αβi,m ,m i = 1, . . . , M and m = 1, . . . , K (19)

3.4 The algorithm

The flowchart of information-entropy guided EA is shown in Fig. 2. Besides the mutation
section, we modified the well-published GA code [2] and the following steps are summarized
for applying our proposed approach:

Step 1: Initializing the population randomly
The set of initial individuals I 0 will be generated in the solution space randomly.
Let the size of population be Mp, and the numbers of variable be N , the initial
population will be an Mp × N array I 0

Mp×N .
Step 2: Calculating objective values of individuals and check convergence. The individuals

of each population will be calculated to get their own fitness values.
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Fig. 2 The flowchart of Information based genetic algorithm

Step 3: Roulette-Wheel selection
Roulette-Wheel selection will be performed to select the survivals.

Step 4: Detecting probable premature convergence
The difference between individuals of each population will be calculated to check
the situation of probable premature convergence. If the sum of absolute difference
is less than a threshold, then there is probable premature convergence. If the situ-
ation of probable premature convergence is not detected, go to Step 5, else go to
Step 6.

Step 5: Acquiring linear crossover. Go to Step 7.
Step 6: Performing information-based mutation as described in the previous section.

(i) Calculating information entropy of each variable E j

(ii) Identifying variables with lower information entropy ωm

(iii) Identifying the lowest Ph,m of each ωm

(iv) Modifying the boundary of subspace sCm ,ωm

(v) Applying the modified subspace to orthogonal design

Step 7: Checking terminal condition, if terminal conditions are matched, stop iteration, else
go to Step 2.
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The original code acquired from the web site [2] is in a more advanced structure than that
described on many reports in regard to the EA. Multi-population is also available in their
program. In this work, only mutation part is furnished to make local search available.

4 Case studies

Numerical experiments are carried out to show the validity of our theory developed in the
previous section. Three popular benchmark problems and one industrial scale numerical
example are solved. The size of population for our testing is 32, Roulette-wheel selection is
adopt, the rate of selection is 80%, the mutate rate is 5%, and the terminal condition is the
number of maximum function evaluations of each benchmark problem.

4.1 The benchmark problems

The well-known three benchmark problems are listed below:

(1) Griewank’s Function:

f1 = 1

4000

N∑

i=1

x2
i −

N∏

i=1

cos

(
xi√

i

)
+ 1 (20)

Solution space: S = [−600, 600]30

(2) Ackley’s Function:

f2 = −20 × exp



−0.2

√√√√1

n

n∑

i=1

x2
i



− exp

(
1

n

n∑

i=1

cos (2πxi )

)

+ 20 + e (21)

Solution space: S = [−32, 32]30

(3) Generalized Schwefel’s Function:

f3 =
n∑

i=1

(
−xi sin

√|xi |
)

(22)

Solution space: S = [−500, 500]30.

The comparisons of the performances of the algorithms for the above three cases based on
the mean and standard deviation with a maximum number of function calls, for instance,
Griewank’s function: 128,000, Ackley’s & Generalized Schwefel’s function : 512,000, are
shown in Table 1. The function calls appeared in Table 1 for each algorithm is for the first
time that a final objective value is hit. In Table 1, all three cases are repeated by 30 times
in order to obtain statistically meaningful results. Let’s term the approach proposed in this
work as IEA and MIEA (multi-population information-guided EA) in comparison with CEA
(conventional EA [22]) and MCEA (multi-population conventional GA [14]). The informa-
tion-guided approach not only improves a modified single population EA, it also finds the
same contribution for all cases of multi-population as shown in Table 1. Note that in Table 1,
we also list the benchmark result found from the literature [17] using a single population GA,
which is even worse than the CEA listed in this paper. This achievement is due to the adoption
of modified fitness function (see Eq. 2) by our code [5]. Figure 3 gives the histories of the
best individual, that decreasing of the objective values as a function of number of function
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Table 1 Comparison between CGA, M-CEA, M-IEA, CEA and IEA

Function CGA [14] M-CEA M-IEA CEA IEA

Mean 1.258 0.01353 0.006789 0.02048 0.0177
f1 STD 1.657 × 10−2 1.0948 × 10−2 6.2364 × 10−3 1.9975 × 10−2 1.0573 × 10−2

Function call 346971 128000 93632 128000 113408
Mean 2.697 6.805 × 10−5 3.047 × 10−5 6.815 × 10−5 5.389 × 10−5

f2 STD 5.668 × 10−2 7.0702 × 10−6 5.3118 × 10−6 5.4525 × 10−6 8.1342 × 10−6

Function call 336,481 175,104 512,000 104,448 512,000
Mean −8444.7583 −12569.48766 −12569.4866 −12563.5647 −12569.4866

f3 STD 65.7326 4.1632 × 10−8 3.4155 × 10−8 26.4836 4.3602 × 10−8

Function call 458,653 248,320 217,088 512,000 499,200

Fig. 3 Comparisons of performance of CEA/IEA for Griewank’s function

calls for Griewank’s function. For the same plots for Ackley’s and Generalized Schwefel’s
functions, the readers are referred to [23]. The trends of all three functions are the same.
Note that all plots are based on the averages of 30 simulation runs. As one might expect, the
multi-population approach can substantially improve the discoveries of the global minimum
of all three cases. However, Fig. 3 also shows that by incorporating the information-based
approach, regardless of the cases of single population or multi-population, the EA has been
proven to be faster convergent when compared with the cases where no information algo-
rithm is included. It also should be noted that Fig. 3 plots the objective values versus number
of function call, and this is equivalent to the objective to number of generation in the sense
that the population size of each generation is the same as we noted in the figure. Table 2
also gives the results of 30 runs for Griewank’s function based on the same CPU time using
a dual AMD Opteron 240 system with 2 Gb RAM on a Windows XP SP2 platform. This
shows that by including more computation efforts to EA, the information-guided approach
still substantially improve the original approach.

Figure 4 shows the effects of threshold δ to the premature detector D in Eq. (4). In Fig. 4,
the normalized objective function ( f (x) − fglobal/ fmax − fglobal) is plot as function of scal-
ing factor. Note that threshold is equal to the scaling factor multiplied by a constant for each
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Table 2 Comparison the performance of CGA, M-CEA, M-IEA, CEA and IEA for Griewank’s function
based on fixed CPU time = 125 s

Methodology M-CEA M-IEA CEA IEA

Mean 7.47149 × 10−3 2.62874 × 10−3 1.85320 × 10−2 1.29335 × 10−2
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Fig. 4 The effects of threshold δ to the premature detector D

Table 3 The number of target hit in 120 simulation runs under the different thresholds

Scaling factor 1 10−2 10−4 10−6 10−8 10−10 10−12 10−14 10−16 10−18 10−20

f1 0 0 104 95 89 79 89 82 76 86 79
f2 0 0 71 120 120 120 120 120 120 120 120
f3 0 28 120 105 85 88 88 82 86 82 87

specific problem as given in Eq. (5). All three functions are solved using the MIEA. The
plot is based on 120 simulation runs of all three functions. As shown in Fig. 4, there exist
critical thresholds for these extremely rugged functions. In case of too high threshold, the
proposed algorithm does not perform appropriately. Table 3 gives the number of target hit in
120 simulation runs under the different scaling factors. As shown in Table 3 and Fig. 4, there
exist optimal thresholds for Griewank’s and generalized Schwefel’s functions. Note that the
critical threshold of Griemank’s function ( f1) is 10−2.763, the critical threshold of Ackley’s
function ( f2) is 10−0.631, and the critical threshold of the generalized Schwefel’s function
( f3) is 10−0.364. As described in Section 3, Fig. 4 and Table 3 show that the global minimum
cannot be found if the threshold of Eq. (5) is greater than the critical threshold.

Figure 5 shows the importance of information-based orthogonal design for solving the
Griewank’s function. There are three cases in each figure, (i) original GA; (ii) information
selection of mutation variables, but information-based orthogonal design is not implemented,
that is, mutation range is random; and (iii) the full approach derived by this work. For the
same plots for Ackley’s and Generalized Schwefel’s functions, the readers are also referred
to [23]. It is shown that without the information-based orthogonal design, the improvement
becomes very limited.



530 J Glob Optim (2006) 36:517–535

Fig. 5 Comparison of information-guided and random-guided variable-selection of Griewank’s function

4.2 Multi-component distillation column

The dynamic behavior of a triple component distillation column using 15 trays is simulated.
The steady state, tray parameter and components could be found in reference [12]. The
following assumptions are applied in our simulation:

• Murphree efficiency is used

MEnj = ynj − yT
n−1, j

y∗
nj − yT

n−1, j

(23)

where y∗
nj is composition of vapor in phase equilibrium with liquid on the nth tray with

composition xnj , ynj is actual composition of vapor leaving the nth tray, yT
n−1, j is actual

composition of vapor entering the nth tray, and MEnj is Murphree vapor efficiency for
the j th tray component on the nth tray.

• Dynamics of the condenser and the re-boiler will be negligible
• Energy equation on each tray is algebraic
• Volumetric liquid holdups in the reflux drum and column base are held perfectly constant
• Liquid hydraulics are calculated from the Francis weir formula
• Pressure is constant and known on each tray

There is one continuity equation for the nth tray:

dWn

dt
= Ln+1 + Fn + Fvn−1 + Vn−1 − Vn − Ln − Sn − Svn (24)

There are two component continuity equations for each tray:

dWnxnj

dt
= Ln+1xn+1 + Fnxfnj + Fvn−1yfn−1, j + Vn−1yn−1, j − Vnynj − Lnxnj −Snxnj − Svnynj

(25)
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Fig. 6 Dynamic behavior of
composition in the top and the
bottom column: (a) top of the
column and (b) bottom of the
column
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There is one energy equation for each tray:

dWnhn

dt
= Ln+1hn+1 + Fnhfn + Fvn−1Hfn−1 + Vn−1Hn−1 − VnHn − Lnhn − Snhn − SvnHn (26)

The Antoine equation can be described as follows:

ln
(

P0
nj

)
= A j

Tn
+ B j (27)

where P0
nj is the vapor pressure of pure component j , and Tn is the temperature of the nth

tray.
Liquids that obey Raoult’s law are called ideal:

P =
3∑

j=1

wnj P0
nj (28)
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Fig. 7 Contour plot of roughness
for distillation problem
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Table 4 Comparison of CEA/IEA for multi-distillation problem

A1 A2 A3 B1 B2 B3

Optimal −11, 638 −18, 703 −13, 142 23.8484 33.3486 22.3025
M-CEA −11, 700.00 −18, 601.17 −13, 193.14 23.9641 33.2035 22.3733
M-IEA −11, 671.10 −18, 659.99 −13, 173.91 23.90934 33.2891 22.3472

Fig. 8 Comparisons of performance of CEA/IEA for ternary distillation problem

ynj = xnj P0
nj

P
(29)

There are 66 original differential equations and 252 algebraic equations used in our sim-
ulation. This problem is solved using a cluster computer with 16 AMD Athlon MP 2400+
CPUs and 8 Gb RAM in National Tsing-Hua University, Taiwan.

In this industrial application cases, the phase equilibrium equations are very difficult
to derive, and hence there is a need to find the numerical values by fitting the dynamic
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data. That is, A j and B j ’s in Eq. (27) are assumed unknown for all three components. For
this testing, A = {A1, A2, A3} = {−11638, −18703, −13142} and B = {B1, B2, B3} =
{23.8484, 33.3486, 22.3025} are set. In this work, it is assumed that the equally spaced
product compositions can be measured from the plant, i.e., the compositions of top tray and
bottom tray can be obtained. Figures 6a and 6b show the typical dynamic profiles in the top
and bottom trays for all three components. Figure 7 illustrates the contour plot of the fitness
function for A1 and B1 by fixing the values of A2, B2, A3 and B3. In Fig. 7, the fitness plot
of two parameters identification problem of the distillation column is showed. It is very clear
that the fitness plot of this kind of two parameters identification problem exits multi-local
optimums. While this problem is extended to six parameters identification, the fitness plot
will be extremely rugged. Table 4 and Fig. 8 compare the proposed approach with the original
multi-population GA. Figure 8 shows the average convergence diagram of 20 runs that IEA
got better converge curve than non-guided ones. Once again, its shows that implementing
the information-guided mutation to EA could promote the search more efficiently.

5 Conclusions

An information-based EA is derived. The basic improvements from the original EA are:

(i) The detection of the situation of probable premature convergence.
(ii) The mutation variables are selected based on the information entropy of each variable.

(iii) The way of mutation is based on the information entropies of each range of the selected
variables.

(iv) The design of the mutation variables are based on an orthogonal array experimental
design approach.

The above mutation approach is general to all types of EA if the algorithm includes mutation
as part of that algorithm. Three benchmark problems and an industrial scale problem are
simulated to show the validity of this algorithm. The results indicate that it is promising to
include information mutation to EA.
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Appendix

The detail to construction an orthogonal array is as follows:

Step 1: Construct the basic columns:
FOR r = 1 : J

m = Qr−1−1
Q−1 + 1

FOR i = 1 : QJ

αi,m = mod
(⌊

i−1
Q J−r

⌋
, Q
)

END
END
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Step 2: Construct the non-basic columns
FOR k = 2 : J

m = Qr−1−1
Q−1 + 1

FOR s = 1 : (m - 1)
FOR t = 1 : (Q - 1)

FOR i = 1 : QJ

αi,m+(s−1)×(Q−1)+t = mod
((

αi,s × t + αi,m
)
, Q
)

END
END

END
END

Step 3: Increment by one for all αi,m

1 ≤ i ≤ M and 1 ≤ m ≤ N

Suppose, there are 4 variables (V1, V2, V3, V4) will be selected to renew the population,
and the lower bound of less discovered section of each variable is L1,k1, L2,k2, L3,k3, L4,k4.
If the less discovered sections of each selected variable will be quantized to 4 levels (Q = 4),
and then J will be found to be 2. We can get 16 combinations (M = 16) of the 4 variables.

β =






1 1 1 1
1 2 2 2
1 3 3 3
1 4 4 4
2 1 2 3
2 2 3 4
2 3 4 1
2 4 1 2
3 1 3 1
3 2 4 2
3 3 1 3
3 4 2 4
4 1 4 3
4 2 1 4
4 3 2 1
4 4 3 2






16×4
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